专业SEO运营推广——帮助您的产品找到客户
电话+V: 152079-09430 ,欢迎咨询大数据平台项目描述,[专业SEO运营],[SEO搜索引擎排名],[SEO免费推广平台],[SEO免费推广产品],[SEO免费推广网站],[让你的产品找到客户流量入口销量起飞]
一、大数据平台是什么?什么时候需要大数据平台?
最近我和我的团队一直在做一些大数据相关的工作,我来回答一下这个问题。
首先是第一个问题,大数据平台是什么?
当我们说到一个平台的时候,我们的意识里面往往就知道,这里面肯定不止一样东西,它是很多东西的一个集合,大数据平台也是一样,首先如果用几个字来描述它的话就是“它是一个数据解决方案”,进一步解析就是:大数据平台它是一个以分布式存储为基础,集成了数据获取,数据清洗,数据流转,数据分析,数据输出等工具集的一个数据解决方案。它的核心使命是提供数据存储和数据分析服务给目标客户。
那么它的核心组成部分是什么呢?实现的方法有多种,我就举一个最典型的大数据平台结构作为说明。
目前无论是国内或者国外,应用最广泛也是最典型的大数据平台是以Hadoop为核心进行功能延伸的生态系统,业内把它叫做Hadoop生态,它开源并且免费使用,它长什么样子?它的面目基本上是这样:
从上图我们得知,它就是一套以Hadoop分布式文件系统为核心的数据处理工具集,目的是为了向用户提供数据分析服务的一个集成解决方案。
什么时候需要大数据平台?
简单的说就是当数据总量大到传统单机数据解决方面没办法存储,分析,计算时就要用到大数据平台。
举例说,家用电脑目前一般是配置2TB大小的硬盘(存储容量约等于于18个128G的iPhone),一般几万块钱的商用服务器容量大约在32TB容量,高端的单机存储器可以达到100TB以上,但是数据量如果再大比如上跳一个数量级1000TB,也就是1PB左右,单机系统就无能为力了,不单是存储容量无能为力,计算能力也无法应对了,因为我们知道,单台计算机的性能是有极限的,数据太多磁盘检索读取的速度就会变慢,CPU和内存压力也会变大,这个时候需要完成一个数据分析任务就要耗时很长,那么这个时候大数据平台就派上用场了,大数据平台的一个特性就是多台计算机组成一个集群集体并行作战,并且理论上可以无限拓展。
希望我的回答能够帮助到您,有任何问题请在留言区留言,也欢迎在线咨询
二、大数据技术平台建设实践
[2015年技术沙龙分享]
因工作内容需要,在2010年初公司规划要建设大数据基础平台,以解决公司多业务多系统支持的混乱局面。因为有之前SNS平台的建设经验,深知一个“平台”的建设不是一个简单的项目,需要投入大量的人力、时间、资源,需要有良好的架构设计能力以及大数据技术的实践储备,是一个持续建设的过程,同时对一个中小企业而言,面临着“大”数据的处理挑战。
一句话定义
互联网信息采集挖掘服务
扩展定义
互联网在线智能计算平台,面向公司内部产品研发和运营团队、第三方应用开发商及独立开发者,在研发政府、媒体、企业、财经、网站等领域的应用时,提供信息、情报、知识、行为、运算等方面的关键支持;
平台整体分为4大部分,同时也成立了4个团队,数据采集、数据存储、数据挖掘、数据接口。
问题1:实时数据在处理过程有延时,时效性不高,业务要求数据处理的及时性在秒级响应
问题2:批处理数据方式效率不高,mfs本质还是文件遍历的方式,无法并行计算
问题3:关联数据的存储和分析
主要做了两个改动:
(1)加入分布式的消息中间件MQ
实时系统原来的轮循模式改为发布订阅模式
解耦流式数据处理和批数据处理模式
(2)引入分布式存储以及并行计算Hadoop生态体系
存储规模增大,写入速度更高
批处理采用MapReduce并行计算方式大幅提升历史数据效率
随着业界的技术发展以及公司业务的持续性发展,大数据平台也逐步引入了更多的开源技术体系
(1)技术方面
(2)业务方面
大数据平台的建设需要成熟的技术团队和公司大量成本的投入,在平台的建设过程中从业务发展、成本投入、技术方案上需要综合考虑,建议在有强烈的业务驱动力下再去投入,公司在平台的建设过程遇中到的各种技术问题很多,包括文中设计的整体架构随着业务的发展仍然面临着新的问题,后续再逐步分享。
三、大数据平台是什么?什么时候需要大数据平台?如何建立大数据平台?
1、大数据平台目前业界也没有统一的定义,但一般情况下,使用了Hadoop、Spark、Storm、Flink等这些分布式的实时或者离线计算框架,建立计算集群,并在上面运行各种计算任务,这就是通常理解上的大数据平台。
2、至于一家企业什么时候需要大数据平台,这取决于这么几方面:
业务需求:业务需求引导是必须的,不能光为了建平台而建平台,建立平台的最终目的是为了服务业务,让业务发展的更好。企业内大数据平台一般是信息管理部门、IT部门承建并承接一些数据需求,业务部门其实不关心你是不是用大数据平台还是用Oracle数据库计算出来的,那么这怎么评估呢?其实主要还是数据量,比如业务部门是不是偶尔会提“去年全年的XX怎么样?”、“去年全年的销售按照渠道、产品类别几个维度进行细分”、“需要用户行为数据、订单数据结合来做用户画像”、“需要给用户打标签”、“设备传感器的数据都有了,需要做实时的故障预测”等等,在承接各种业务需求的时候,是不是偶尔会出现任务运行很久的情况?会不会出现有些需求根本难以实现,因为计算量太大的问题?这就说明,业务上已经有大数据的诉求了,技术上并没有满足。
说到业务需求,企业内的信息管理部门也要注意,自己不能光承担需求,更重要的是要深入业务,理解业务,本部门对技术了解,如果对业务也多了解一下,就能够利用技术优势做到“想业务部门所未想”,实现比业务部门能提出更好的需求,并且能用大数据技术实现这个需求,这时候,信息管理部门的价值就更突出了,在企业内就再也不是一个承接需求或者背锅的部门了。
数据量与计算量:涉及到数据量的评估,也包括2方面:
现有的情况:现在有多少数据?都存储在哪里?业务部门提的各种指标需求,每天需要多长时间计算完成?每天什么时候完成昨天经营情况的数据更新?
增长的情况:每天、每周、每个月的数据增量有多少?按照这个增速,现有的配置还能满足多长时间的需求?
以上2个方面需要综合评估,现有数据量较多或者增长较快,那就需要做大数据平台的打算了。
先进性:本企业在技术上的布局是否需要一定前瞻性?需要早在数据量不太大的时候就进行技术探索?亦或是未来会上马新项目,新项目会产生大量数据。
公有云与私有云的选择:如果企业对公有云比较接受,其实可以考虑直接数据上公有云,公有云在国内主要就是阿里云、腾讯云、百度云等,其中阿里云的技术最为成熟,此外还有亚马逊的AWS等,但这里说的是搭建自己的大数据平台,就不深入展开了。
3、如何搭建大数据平台
建设一个大数据平台不是一朝一夕能完成的,不是下载安装几个开源组件那么简单。
涉及到:
技术层面:如何进行系统架构设计?集群资源如何评估?需要哪些组件?Hadoop、Spark、Tez、Storm、Flink,这些组件有什么区别?它们之间如何有机的组合起来?
团队层面:现有的技术团队配比如何?有没有人力搭建并且运维这个平台?有没有能力运营好这个平台?
对于非常重视主营业