专业新媒体运营推广——跟随大平台节奏
电话+V: 152079-09430 ,欢迎咨询不会函数能学会导数吗知乎,[专业新媒体运营推广],[各种商圈业内交流],[抖音运营推广课程],[微信运营推广课程],[小红书运营推广课程],[让你站在风口忘记焦虑]
一、数学导函数怎么学
相对来说导数还是比较容易的,因为它的几乎所有题目,都是一个套路。
首先要把几个常用求导公式记清楚;
然后在解题时先看好定义域;对函数求导,对结果通分(这样会让下面判断符号比较容易);
接下来,一般情况下,令导数=0,求出极值点;在极值点的两边的区间,分别判断导数的符号,是正还是负;正的话,原来的函数则为增,负的话就为减,然后根据增减性就能大致画出原函数的图像,根据图像就可以求出你想要的东西,比如最大值或最小值等。
如果特殊情况,导数本身符号可以直接确定,也就是导数等于0无解时,说明在整个这一段上,原函数都是单调的。如果导数恒大于0,就增;反之,就减。
二、高中先学函数还是导数,学好导数需要什么基础?
先学函数,再学导数。因为导数就是函数的导数。要把函数的基础知识掌握好,再扎实地学习导数。三、我没学过导数,谁能给我简单介绍下导数的运算、基本性质、怎样在题中...
导数导数(Derivative)是微积分中的重要基础概念。当自变量的增量趋于零时,因变量的增量与自变量的增量之商的极限。在一个函数存在导数时,称这个函数可导或者可微分。可导的函数一定连续。不连续的函数一定不可导。导数实质上就是一个求极限的过程,导数的四则运算法则来源于极限的四则运算法则。
目录[隐藏]
导数(derivativefunction)
导数是微积分中的重要概念。
求导数的方法
导数公式及证明导数的应用
高阶导数高阶导数的求法
导数(derivativefunction)
导数是微积分中的重要概念。
求导数的方法
导数公式及证明导数的应用
高阶导数高阶导数的求法
导数(derivativefunction)
亦名纪数、微商,由速度变化问题和曲线的切线问题而抽象出来的数学概念。又称变化率。
如一辆汽车在10小时内走了600千米,它的平均速度是60千米/小时,但在实际行驶过程中,是有快慢变化的,不都是60千米/小时。为了较好地反映汽车在行驶过程中的快慢变化情况,可以缩短时间间隔,设汽车所在位置s与时间t的关系为s=f(t),那么汽车在由时刻t0变到t1这段时间内的平均速度是[f(t1)-f(t0)]/[t1-t0],当t1与t0很接近时,汽车行驶的快慢变化就不会很大,平均速度就能较好地反映汽车在t0到t1这段时间内的运动变化情况,自然就把极限[f(t1)-f(t0)]/[t1-t0]作为汽车在时刻t0的瞬时速度,这就是通常所说的速度。一般地,假设一元函数y=f(x)在x0点的附近(x0-a,x0+a)内有定义,当自变量的增量Δx=x-x0→0时函数增量Δy=f(x)-f(x0)与自变量增量之比的极限存在且有限,就说函数f在x0点可导,称之为f在x0点的导数(或变化率)。若函数f在区间I的每一点都可导,便得到一个以I为定义域的新函数,记作f',称之为f的导函数,简称为导数。函数y=f(x)在x0点的导数f'(x0)的几何意义:表示曲线l在P0〔x0,f(x0)〕点的切线斜率。一般地,我们得出用函数的导数来判断函数的增减性的法则:设y=f(x)在(a,b)内可导。如果在(a,b)内,f'(x)>0,则f(x)在这个区间是单调增加的。。如果在(a,b)内,f'(x)<0,则f(x)在这个区间是单调减小的。所以,当f'(x)=0时,y=f(x)有极大值或极小值,极大值中最大者是最大值,极小值中最小者是最小值。
导数的几何意义是该函数曲线在这一点上的切线斜率。
[编辑本段]导数是微积分中的重要概念。
导数另一个定义:当x=x0时,f‘(x0)是一个确定的数。这样,当x变化时,f'(x)便是x的一个函数,我们称他为f(x)的导函数(derivativefunction)(简称导数)。
y=f(x)的导数有时也记作y',即f'(x)=y'=limΔx→0[f(x+Δx)-f(x)]/Δx
物理学、几何学、经济学等学科中的一些重要概念都可以用导数来表示。如,导数可以表示运动物体的瞬时速度和加速度、可以表示曲线在一点的斜率、还可以表示经济学中的边际和弹性。
以上说的经典导数定义可以认为是反映局部欧氏空间的函数变化。为了研究更一般的流形上的向量丛截面(比如切向量场)的变化,导数的概念被推广为所谓的“联络”。有了联络,人们就可以研究大范围的几何问题,这是微分几何与物理中最重要的基础概念之一。
注意:1.f'(x)<0是f(x)为减函数的充分不必要条件,不是充要条件。
2.导数为零的点不一定是极值点。当函数为常值函数,没有增减性,即没有极值点。但导数为零。(导数为零的点称之为驻点,如果驻点两侧的导数的符号相反,则该点为极值点,否则为一般的驻点,如y=x^3中f‘(0)=0,x=0的左右导数符号为正,该点为一般驻点。)
[编辑本段]求导数的方法
(1)求函数y=f(x)在x0处导数的步骤:
①求函数的增量Δy=f(x0+Δx)-f(x0)
②求平均变化率
③取极限,得导数。
(2)几种常见函数的导数公式:
①C'=0(C为常数函数);
②(x^n)'=nx^(n-1)(n∈Q);
③(sinx)'=cosx;
④(cosx)'=-sinx;
⑤(e^x)'=e^x;
⑥(a^x)'=a^xlna(ln为自然对数)
⑦(Inx)'=1/x(ln为自然对数)
⑧(logax)'=(xlna)^(-1),(a>0且a不等于1)
补充一下。上面的公式是不可以代常数进去的,只能代函数,新学导数的人往往忽略这一点,造成歧义,要多加注意。
(3)导数的四则运算法则:
①(u±v)'=u'±v'
②(uv)'=u'v+uv'
③(u/v)'=(u'v-uv')/v^2
(4)复合函数的导数
复合函数对自变量的导数,等于已知函数对中间变量的导数,乘以中间变量对自变量的导数--称为链式法则。
导数是微积分的一个重要的支柱。牛顿及莱布尼茨对此做出了卓越的贡献!
[编辑本段]导数公式及证明
这里将列举几个基本的函数的导数以及它们的推导过程:
1.y=c(c为常数)y'=0基本导数公式
2.y=x^ny'=nx^(n-1)
3.y=a^xy'=a^xlna
y=e^xy'=e^x
4.f(x)=logaXf'(x)=1/xlna(a>0且a不等于1,x>0)
y=lnxy'=1/x
5.y=sinxy'=cosx